Every totally disconnected separable metrizable topological group is an autohomeomorphism group

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jan van Mill

De Groot proved that every group is the autohomeomorphism group of some metrizable space. A space is totally disconnected if every connected subset of it contains at most one point. We prove that every separable metrizable totally disconnected topological group is topologically isomorphic to the autohomeomorphism group of some separable metrizable space, when given the compact-open topology. It...

متن کامل

α − separable and o-topological group

we introduce some new concepts of topological spaces which say α − separable topologicalspace and o-topological group, α − first axiom, α − second axiom, and we find some relations betweenthem with some applications in normed spaces.

متن کامل

A SEPARABLE NORMAL TOPOLOGICAL GROUP WHICH IS NOT LINDELijF

In 1968 Wilansky asked whether a separable normal topological group must be Lindelof. In [7] this question was answered in the negative, assuming CH, by constructing a hereditarily separable, normal group which is not Lindeliif. We give an example of a separable normal group which contains a closed subspace homeomorphic to an uncountable regular cardinal, in ZFC only. Of course we have to sacri...

متن کامل

Every Abelian Group Is a Class Group

Let T be the set of minimal primes of a Krull domain A. If S is a subset of T9 we form B = n AP for PeS and study the relation of the class group of B to that of A. We find that the class group of B is always a homomorphic image of that of A. We use this type of construction to obtain a Krull domain with specified class group and then alter such a Krull domain to obtain a Dedekind domain with t...

متن کامل

Lattice of compactifications of a topological group

We show that the lattice of compactifications of a topological group $G$ is a complete lattice which is isomorphic to the lattice of all closed normal subgroups of the Bohr compactification $bG$ of $G$. The correspondence defines a contravariant functor from the category of topological groups to the category of complete lattices. Some properties of the compactification lattice of a topological ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1990

ISSN: 0166-8641

DOI: 10.1016/0166-8641(90)90098-m